EconPapers    
Economics at your fingertips  
 

Tree-based multivariate regression and density estimation with right-censored data

Annette M. Molinaro, Sandrine Dudoit and M.J.Mark J. van der Laan

Journal of Multivariate Analysis, 2004, vol. 90, issue 1, 154-177

Abstract: We propose a unified strategy for estimator construction, selection, and performance assessment in the presence of censoring. This approach is entirely driven by the choice of a loss function for the full (uncensored) data structure and can be stated in terms of the following three main steps. (1) First, define the parameter of interest as the minimizer of the expected loss, or risk, for a full data loss function chosen to represent the desired measure of performance. Map the full data loss function into an observed (censored) data loss function having the same expected value and leading to an efficient estimator of this risk. (2) Next, construct candidate estimators based on the loss function for the observed data. (3) Then, apply cross-validation to estimate risk based on the observed data loss function and to select an optimal estimator among the candidates. A number of common estimation procedures follow this approach in the full data situation, but depart from it when faced with the obstacle of evaluating the loss function for censored observations. Here, we argue that one can, and should, also adhere to this estimation road map in censored data situations. Tree-based methods, where the candidate estimators in Step 2 are generated by recursive binary partitioning of a suitably defined covariate space, provide a striking example of the chasm between estimation procedures for full data and censored data (e.g., regression trees as in CART for uncensored data and adaptations to censored data). Common approaches for regression trees bypass the risk estimation problem for censored outcomes by altering the node splitting and tree pruning criteria in manners that are specific to right-censored data. This article describes an application of our unified methodology to tree-based estimation with censored data. The approach encompasses univariate outcome prediction, multivariate outcome prediction, and density estimation, simply by defining a suitable loss function for each of these problems. The proposed method for tree-based estimation with censoring is evaluated using a simulation study and the analysis of CGH copy number and survival data from breast cancer patients.

Keywords: CART; Censored; data; Comparative; genomic; hybridization; Cross-validation; Density; estimation; Loss; function; Microarray; Model; selection; Multivariate; outcome; Prediction; Regression; tree; Risk; estimation; Survival; analysis (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00029-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:1:p:154-177

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:154-177