Exploring interactions in high-dimensional genomic data: an overview of Logic Regression, with applications
Ingo Ruczinski,
Charles Kooperberg and
Michael L. LeBlanc
Journal of Multivariate Analysis, 2004, vol. 90, issue 1, 178-195
Abstract:
Logic Regression is an adaptive regression methodology mainly developed to explore high-order interactions in genomic data. Logic Regression is intended for situations where most of the covariates in the data to be analyzed are binary. The goal of Logic Regression is to find predictors that are Boolean (logical) combinations of the original predictors. In this article, we give an overview of the methodology and discuss some applications. We also describe the software for Logic Regression, which is available as an R and S-Plus package.
Keywords: Adaptive; model; selection; Boolean; logic; Binary; variables; Interactions; Single; nucleotide; polymorphisms (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00030-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:1:p:178-195
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().