EconPapers    
Economics at your fingertips  
 

Analyzing factorial designed microarray experiments

Denise Scholtens, Alexander Miron, Faisal M. Merchant, Arden Miller, Penelope L. Miron, J. Dirk Iglehart and Robert Gentleman

Journal of Multivariate Analysis, 2004, vol. 90, issue 1, 19-43

Abstract: High-throughput quantification of gene expression using microarray technology has dramatically changed biological investigation into the roles of genes in normal cell functioning, as well as the mechanisms of disease. We discuss an analytic approach for framing biological questions in terms of statistical parameters to efficiently and confidently answer questions of interest using microarray data from factorial designed experiments. Investigators can extract pertinent and interpretable information from the data about the effects of the factors, their interactions with each other, and the statistical significance of these effects, rather than rely solely on clustering techniques or fold change point estimates in hopes of finding co-expressed genes. By first examining how biological mechanisms are reflected in mRNA transcript abundance, investigators can better design microarray experiments to answer the most interesting questions.

Keywords: Estrogen; target; Gene; expression; Gene; selection; Linear; model; Experimental; design (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00031-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:1:p:19-43

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:19-43