EconPapers    
Economics at your fingertips  
 

Problems in gene clustering based on gene expression data

Jenny Bryan

Journal of Multivariate Analysis, 2004, vol. 90, issue 1, 44-66

Abstract: In this work, we assess the suitability of cluster analysis for the gene grouping problem confronted with microarray data. Gene clustering is the exercise of grouping genes based on attributes, which are generally the expression levels over a number of conditions or subpopulations. The hope is that similarity with respect to expression is often indicative of similarity with respect to much more fundamental and elusive qualities, such as function. By formally defining the true gene-specific attributes as parameters, such as expected expression across the conditions, we obtain a well-defined gene clustering parameter of interest, which greatly facilitates the statistical treatment of gene clustering. We point out that genome-wide collections of expression trajectories often lack natural clustering structure, prior to ad hoc gene filtering. The gene filters in common use induce a certain circularity to most gene cluster analyses: genes are points in the attribute space, a filter is applied to depopulate certain areas of the space, and then clusters are sought (and often found!) in the "cleaned" attribute space. As a result, statistical investigations of cluster number and clustering strength are just as much a study of the stringency and nature of the filter as they are of any biological gene clusters. In the absence of natural clusters, gene clustering may still be a worthwhile exercise in data segmentation. In this context, partitions can be fruitfully encoded in adjacency matrices and the sampling distribution of such matrices can be studied with a variety of bootstrapping techniques.

Keywords: Cluster; analysis; Microarrays; Confidence; Bootstrap (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00021-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:1:p:44-66

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:44-66