EconPapers    
Economics at your fingertips  
 

Clustering and classification based on the L1 data depth

Rebecka Jörnsten

Journal of Multivariate Analysis, 2004, vol. 90, issue 1, 67-89

Abstract: Clustering and classification are important tasks for the analysis of microarray gene expression data. Classification of tissue samples can be a valuable diagnostic tool for diseases such as cancer. Clustering samples or experiments may lead to the discovery of subclasses of diseases. Clustering genes can help identify groups of genes that respond similarly to a set of experimental conditions. We also need validation tools for clustering and classification. Here, we focus on the identification of outliers--units that may have been misallocated, or mislabeled, or are not representative of the classes or clusters. We present two new methods: DDclust and DDclass, for clustering and classification. These non-parametric methods are based on the intuitively simple concept of data depth. We apply the methods to several gene expression and simulated data sets. We also discuss a convenient visualization and validation tool--the relative data depth plot.

Keywords: Clustering; Classification; Data; depth; Relative; data; depth (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00027-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:1:p:67-89

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:67-89