Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function
Anoop Chaturvedi () and
Shalabh
Journal of Multivariate Analysis, 2004, vol. 90, issue 2, 229-256
Abstract:
In this article, a family of feasible generalized double k-class estimator in a linear regression model with non-spherical disturbances is considered. The performance of this estimator is judged with feasible generalized least-squares and feasible generalized Stein-rule estimators under balanced loss function using the criteria of quadratic risk and general Pitman closeness. A Monte-Carlo study investigates the finite sample properties of several estimators arising from the family of feasible double k-class estimators.
Keywords: Linear; regression; model; Balanced; loss; function; Pitman; closeness; Double; k-class; estimator (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00156-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:2:p:229-256
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().