Sharp minimaxity and spherical deconvolution for super-smooth error distributions
Peter T. Kim,
Ja-Yong Koo and
Heon Jin Park
Journal of Multivariate Analysis, 2004, vol. 90, issue 2, 384-392
Abstract:
The spherical deconvolution problem was first proposed by Rooij and Ruymgaart (in: G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers, Dordrecht, 1991, pp. 679-690) and subsequently solved in Healy et al. (J. Multivariate Anal. 67 (1998) 1). Kim and Koo (J. Multivariate Anal. 80 (2002) 21) established minimaxity in the L2-rate of convergence. In this paper, we improve upon the latter and establish sharp minimaxity under a super-smooth condition on the error distribution.
Keywords: Hellinger; distance; Rotational; harmonics; Sobolev; spaces; Spherical; harmonics (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00147-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:90:y:2004:i:2:p:384-392
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().