EconPapers    
Economics at your fingertips  
 

Linear mixed models and penalized least squares

Douglas M. Bates and Saikat DebRoy

Journal of Multivariate Analysis, 2004, vol. 91, issue 1, 1-17

Abstract: Linear mixed-effects models are an important class of statistical models that are used directly in many fields of applications and also are used as iterative steps in fitting other types of mixed-effects models, such as generalized linear mixed models. The parameters in these models are typically estimated by maximum likelihood or restricted maximum likelihood. In general, there is no closed-form solution for these estimates and they must be determined by iterative algorithms such as EM iterations or general nonlinear optimization. Many of the intermediate calculations for such iterations have been expressed as generalized least squares problems. We show that an alternative representation as a penalized least squares problem has many advantageous computational properties including the ability to evaluate explicitly a profiled log-likelihood or log-restricted likelihood, the gradient and Hessian of this profiled objective, and an ECME update to refine this objective.

Keywords: REML; Gradient; Hessian; EM; algorithm; ECME; algorithm; Maximum; likelihood; Profile; likelihood; Multilevel; models (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00086-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:91:y:2004:i:1:p:1-17

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:91:y:2004:i:1:p:1-17