Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data
Daowen Zhang and
Marie Davidian
Journal of Multivariate Analysis, 2004, vol. 91, issue 1, 90-106
Abstract:
Lin and Zhang (J. Roy. Statist. Soc. Ser. B 61 (1999) 381) proposed the generalized additive mixed model (GAMM) as a framework for analysis of correlated data, where normally distributed random effects are used to account for correlation in the data, and proposed to use double penalized quasi-likelihood (DPQL) to estimate the nonparametric functions in the model and marginal likelihood to estimate the smoothing parameters and variance components simultaneously. However, the normal distributional assumption for the random effects may not be realistic in many applications, and it is unclear how violation of this assumption affects ensuing inferences for GAMMs. For a particular class of GAMMs, we propose a conditional estimation procedure built on a conditional likelihood for the response given a sufficient statistic for the random effect, treating the random effect as a nuisance parameter, which thus should be robust to its distribution. In extensive simulation studies, we assess performance of this estimator under a range of conditions and use it as a basis for comparison to DPQL to evaluate the impact of violation of the normality assumption. The procedure is illustrated with application to data from the Multicenter AIDS Cohort Study (MACS).
Keywords: Longitudinal; data; Marginal; likelihood; Nonparametric; regression; Smoothing; spline; Variance; component (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00081-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:91:y:2004:i:1:p:90-106
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().