Multivariate Lukacs theorem
Konstancja Bobecka and
Jacek Wesolowski
Journal of Multivariate Analysis, 2004, vol. 91, issue 2, 143-160
Abstract:
According to the celebrated Lukacs theorem, independence of quotient and sum of two independent positive random variables characterizes the gamma distribution. Rather unexpectedly, it appears that in the multivariate setting, the analogous independence condition does not characterize the multivariate gamma distribution in general, but is far more restrictive: it implies that the respective random vectors have independent or linearly dependent components. Our basic tool is a solution of a related functional equation of a quite general nature. As a side effect the form of the multivariate distribution with univariate Pareto conditionals is derived.
Keywords: Gamma; distribution; Independence; Lukacs; theorem; Functional; equations; Pareto; conditional; distribution (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00158-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:91:y:2004:i:2:p:143-160
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().