Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process
Roelof Helmers,
I. Wayan Mangku and
Ricardas Zitikis
Journal of Multivariate Analysis, 2005, vol. 92, issue 1, 1-23
Abstract:
We consider a kernel-type nonparametric estimator of the intensity function of a cyclic Poisson process when the period is unknown. We assume that only a single realization of the Poisson process is observed in a bounded window which expands in time. We compute the asymptotic bias, variance, and the mean-squared error of the estimator when the window indefinitely expands.
Keywords: Poisson; process; Point; process; Intensity; function; Period; Nonparametric; estimation; Consistency; Bias; Variance; Mean-squared; error (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00082-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:92:y:2005:i:1:p:1-23
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().