A generalized Mahalanobis distance for mixed data
A. R. de Leon and
K. C. Carrière
Journal of Multivariate Analysis, 2005, vol. 92, issue 1, 174-185
Abstract:
A distance for mixed nominal, ordinal and continuous data is developed by applying the Kullback-Leibler divergence to the general mixed-data model, an extension of the general location model that allows for ordinal variables to be incorporated in the model. The distance obtained can be considered as a generalization of the Mahalanobis distance to data with a mixture of nominal, ordinal and continuous variables. Moreover, it includes as special cases previous Mahalanobis-type distances developed by Bedrick et al. (Biometrics 56 (2000) 394) and Bar-Hen and Daudin (J. Multivariate Anal. 53 (1995) 332). Asymptotic results regarding the maximum likelihood estimator of the distance are discussed. The results of a simulation study on the level and power of the tests are reported and a real-data example illustrates the method.
Keywords: Latent; variable; models; Maximum; likelihood; Measurement; level; Multivariate; normal; distribution; Polychoric; and; polyserial; correlations; Probit; models (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00150-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:92:y:2005:i:1:p:174-185
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().