A semiparametric density estimator based on elliptical distributions
Eckhard Liebscher
Journal of Multivariate Analysis, 2005, vol. 92, issue 1, 205-225
Abstract:
In the paper we study a semiparametric density estimation method based on the model of an elliptical distribution. The method considered here shows a way to overcome problems arising from the curse of dimensionality. The optimal rate of the uniform strong convergence of the estimator under consideration coincides with the optimal rate for the usual one-dimensional kernel density estimator except in a neighbourhood of the mean. Therefore the optimal rate does not depend on the dimension. Moreover, asymptotic normality of the estimator is proved.
Keywords: Elliptical; distributions; Kernel; density; estimator (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00163-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:92:y:2005:i:1:p:205-225
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().