Estimation of the entropy of a multivariate normal distribution
Neeraj Misra,
Harshinder Singh and
Eugene Demchuk
Journal of Multivariate Analysis, 2005, vol. 92, issue 2, 324-342
Abstract:
Motivated by problems in molecular biosciences wherein the evaluation of entropy of a molecular system is important for understanding its thermodynamic properties, we consider the efficient estimation of entropy of a multivariate normal distribution having unknown mean vector and covariance matrix. Based on a random sample, we discuss the problem of estimating the entropy under the quadratic loss function. The best affine equivariant estimator is obtained and, interestingly, it also turns out to be an unbiased estimator and a generalized Bayes estimator. It is established that the best affine equivariant estimator is admissible in the class of estimators that depend on the determinant of the sample covariance matrix alone. The risk improvements of the best affine equivariant estimator over the maximum likelihood estimator (an estimator commonly used in molecular sciences) are obtained numerically and are found to be substantial in higher dimensions, which is commonly the case for atomic coordinates in macromolecules such as proteins. We further establish that even the best affine equivariant estimator is inadmissible and obtain Stein-type and Brewster-Zidek-type estimators dominating it. The Brewster-Zidek-type estimator is shown to be generalized Bayes.
Keywords: Affine; equivariant; estimators; Brewster-Zidek-type; estimator; Entropy; Generalized; Bayes; estimator; Inadmissible; estimator; Quadratic; loss; function; Risk; function; Stein-type; estimator; Wishart; distribution (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00178-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:92:y:2005:i:2:p:324-342
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().