Testing multivariate normality in incomplete data of small sample size
Ming Tan,
Hong-Bin Fang,
Guo-Liang Tian and
Gang Wei
Journal of Multivariate Analysis, 2005, vol. 93, issue 1, 164-179
Abstract:
In longitudinal studies with small samples and incomplete data, multivariate normal-based models continue to be a powerful tool for analysis. This has included a broad scope of biomedical studies. Testing the assumption of multivariate normality (MVN) is critical. Although many methods are available for testing normality in complete data with large samples, a few deal with the testing in small samples. For example, Liang et al. (J. Statist. Planning and Inference 86 (2000) 129) propose a projection procedure for testing MVN for complete-data with small samples where the sample sizes may be close to the dimension. To our knowledge, no statistical methods for testing MVN in incomplete data with small samples are yet available. This article develops a test procedure in such a setting using multiple imputations and the projection test. To utilize the incomplete data structure in multiple imputation, we adopt a noniterative inverse Bayes formulae (IBF) sampling procedure instead of the iterative Gibbs sampling to generate iid samples. Simulations are performed for both complete and incomplete data when the sample size is less than the dimension. The method is illustrated with a real study on an anticancer drug.
Keywords: Bayesian; analysis; EM; algorithm; IBF; sampling; Multiple; imputation; Multivariate; normality; test; Projection; test (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00037-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:93:y:2005:i:1:p:164-179
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().