The general common Hermitian nonnegative-definite solution to the matrix equations AXA*=BB* and CXC*=DD* with applications in statistics
Xian Zhang
Journal of Multivariate Analysis, 2005, vol. 93, issue 2, 257-266
Abstract:
We deduce a necessary and sufficient condition for the matrix equations AXA*=BB* and CXC*=DD* to have a common Hermitian nonnegative-definite solution and a representation of the general common Hermitian nonnegative-definite solution to these two equations when they have such common solutions. Thereby, we solve a statistical problem which is concerned in testing linear hypotheses about regression coefficients in the multivariate linear model. This paper is a revision of Young et al. (J. Multivariate Anal. 68 (1999) 165) whose mistake was pointed out in (Linear Algebra Appl. 321 (2000) 123).
Keywords: Hermitian; (symmetric); nonnegative-definite; solution; Hermitian; (symmetric); positive-definite; solution; Matrix; equation; Kernel; space; Column; space; Moore-Penrose; generalized; inverse; Linear; hypothesis; Multivariate; linear; model (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00083-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:93:y:2005:i:2:p:257-266
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().