Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation
Tarn Duong and
Martin L. Hazelton
Journal of Multivariate Analysis, 2005, vol. 93, issue 2, 417-433
Abstract:
Progress in selection of smoothing parameters for kernel density estimation has been much slower in the multivariate than univariate setting. Within the context of multivariate density estimation attention has focused on diagonal bandwidth matrices. However, there is evidence to suggest that the use of full (or unconstrained) bandwidth matrices can be beneficial. This paper presents some results in the asymptotic analysis of data-driven selectors of full bandwidth matrices. In particular, we give relative rates of convergence for plug-in selectors and a biased cross-validation selector.
Keywords: Asymptotic; Biased; cross-validation; Gaussian; kernel; MISE; Plug-in; Smoothing (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00078-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:93:y:2005:i:2:p:417-433
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().