EconPapers    
Economics at your fingertips  
 

On Hadamard differentiability in k-sample semiparametric models--with applications to the assessment of structural relationships

Gudrun Freitag and Axel Munk

Journal of Multivariate Analysis, 2005, vol. 94, issue 1, 123-158

Abstract: Semiparametric models to describe the functional relationship between k groups of observations are broadly applied in statistical analysis, ranging from nonparametric ANOVA to proportional hazard (ph) rate models in survival analysis. In this paper we deal with the empirical assessment of the validity of such a model, which will be denoted as a "structural relationship model". To this end Hadamard differentiability of a suitable goodness-of-fit measure in the k-sample case is proved. This yields asymptotic limit laws which are applied to construct tests for various semiparametric models, including the Cox ph model. Two types of asymptotics are obtained, first when the hypothesis of the semiparametric model under investigation holds true, and second for the case when a fixed alternative is present. The latter result can be used to validate the presence of a semiparametric model instead of simply checking the null hypothesis "the model holds true". Finally, various bootstrap approximations are numerically investigated and a data example is analyzed.

Keywords: Semiparametric; model; Hadamard; differentiability; Quadratic; differentiability; Weak; convergence; k-sample; problem; Goodness-of-fit; Proportional; hazard; rates; Nonlinear; approximation; Multivariate; empirical; process (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00044-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:94:y:2005:i:1:p:123-158

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:94:y:2005:i:1:p:123-158