Estimation of regression contour clusters--an application of the excess mass approach to regression
Wolfgang Polonik and
Zailong Wang
Journal of Multivariate Analysis, 2005, vol. 94, issue 2, 227-249
Abstract:
The paper shows that the technique known as excess mass can be translated to non-parametric regression with random design in d-dimensional Euclidean space, where the regression function m is given by m(x)=E(Y|X=x),x[set membership, variant]Rd. The approach is applied to estimating regression contour clusters, which are sets where m exceeds a certain threshold value. This is accomplished without prior estimation of the regression function. Consistency of the resulting estimators is studied, and a functional central limit theorem for the excess mass is derived in the regression context.
Keywords: Consistency; Excess; mass; Regression; contour; cluster; Empirical; processes; Bracketing; numbers; Asymptotic; normality (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00104-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:94:y:2005:i:2:p:227-249
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().