Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix
Akimichi Takemura and
Yo Sheena
Journal of Multivariate Analysis, 2005, vol. 94, issue 2, 271-299
Abstract:
We consider the asymptotic joint distribution of the eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues become infinitely dispersed. We show that the normalized sample eigenvalues and the relevant elements of the sample eigenvectors are asymptotically all mutually independently distributed. The limiting distributions of the normalized sample eigenvalues are chi-squared distributions with varying degrees of freedom and the distribution of the relevant elements of the eigenvectors is the standard normal distribution. As an application of this result, we investigate tail minimaxity in the estimation of the population covariance matrix of Wishart distribution with respect to Stein's loss function and the quadratic loss function. Under mild regularity conditions, we show that the behavior of a broad class of tail minimax estimators is identical when the sample eigenvalues become infinitely dispersed.
Keywords: Asymptotic; distribution; Covariance; matrix; Minimax; estimator; Quadratic; loss; Singular; parameter; Stein's; loss; Tail; minimaxity (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00106-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:94:y:2005:i:2:p:271-299
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().