Covariance estimation under spatial dependence
Reinhard Furrer
Journal of Multivariate Analysis, 2005, vol. 94, issue 2, 366-381
Abstract:
Correlated multivariate processes have a dependence structure which must be taken into account when estimating the covariance matrix. The natural estimator of the covariance matrix is introduced and is shown that to be biased under the dependence structure. This bias is studied under two different asymptotic models, namely increasing the domain by increasing the number of observations, and increasing the number of observations in the fixed domain. Using the first asymptotic model, we quantify the convergence rate of the bias and of the covariance between the components of the estimated covariance matrix. The second asymptotic model serves to derive a fast and accurate bias correction. As shown, under mild hypotheses, the asymptotic normality of the estimated covariance matrix holds and can be used to test whether the bias is significant, for example, in the sense that the eigenvectors of the estimated and true covariance matrices are significantly different.
Keywords: Covariance; estimation; Bias; Increasing-domain; asymptotics; Infill; asymptotics; Principal; components (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00112-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:94:y:2005:i:2:p:366-381
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().