Efficiency of test for independence after Box-Cox transformation
Jade Freeman and
Reza Modarres
Journal of Multivariate Analysis, 2005, vol. 95, issue 1, 107-118
Abstract:
We consider the efficiency and the power of the normal theory test for independence after a Box-Cox transformation. We obtain an expression for the correlation between the variates after a Box-Cox transformation in terms of the correlation on the normal scale. We discuss the efficiency of test of independence after a Box-Cox transformation and show that for the family considered it is always more efficient to conduct the test of independence based on Pearson correlation coefficient after transformation to normality. Power of test of independence before and after a Box-Cox transformation is studied for a finite sample size using Monte Carlo simulation. Our results show that we can increase the power of the normal-theory test for independence after estimating the transformation parameter from the data. The procedure has application for generating non-negative random variables with prescribed correlation.
Keywords: Bivariate; non-normal; variables; Box-Cox; transformation; Pitman's; efficiency; Power; Independence (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00160-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:1:p:107-118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().