EconPapers    
Economics at your fingertips  
 

Censored multiple regression by the method of average derivatives

Xuewen Lu and M.D. Burke

Journal of Multivariate Analysis, 2005, vol. 95, issue 1, 182-205

Abstract: This paper proposes a technique [termed censored average derivative estimation (CADE)] for studying estimation of the unknown regression function in nonparametric censored regression models with randomly censored samples. The CADE procedure involves three stages: firstly-transform the censored data into synthetic data or pseudo-responses using the inverse probability censoring weighted (IPCW) technique, secondly estimate the average derivatives of the regression function, and finally approximate the unknown regression function by an estimator of univariate regression using techniques for one-dimensional nonparametric censored regression. The CADE provides an easily implemented methodology for modelling the association between the response and a set of predictor variables when data are randomly censored. It also provides a technique for "dimension reduction" in nonparametric censored regression models. The average derivative estimator is shown to be root-n consistent and asymptotically normal. The estimator of the unknown regression function is a local linear kernel regression estimator and is shown to converge at the optimal one-dimensional nonparametric rate. Monte Carlo experiments show that the proposed estimators work quite well.

Keywords: Asymptotic; normality; Average; derivative; CADE; regression; Censoring; Data; transformation; Kernel; smoothing; Local; polynomial (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00132-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:1:p:182-205

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:182-205