High breakdown estimators for principal components: the projection-pursuit approach revisited
Christophe Croux and
Anne Ruiz-Gazen
Journal of Multivariate Analysis, 2005, vol. 95, issue 1, 206-226
Abstract:
Li and Chen (J. Amer. Statist. Assoc. 80 (1985) 759) proposed a method for principal components using projection-pursuit techniques. In classical principal components one searches for directions with maximal variance, and their approach consists of replacing this variance by a robust scale measure. Li and Chen showed that this estimator is consistent, qualitative robust and inherits the breakdown point of the robust scale estimator. We complete their study by deriving the influence function of the estimators for the eigenvectors, eigenvalues and the associated dispersion matrix. Corresponding Gaussian efficiencies are presented as well. Asymptotic normality of the estimators has been treated in a paper of Cui et al. (Biometrika 90 (2003) 953), complementing the results of this paper. Furthermore, a simple explicit version of the projection-pursuit based estimator is proposed and shown to be fast to compute, orthogonally equivariant, and having the maximal finite-sample breakdown point property. We will illustrate the method with a real data example.
Keywords: Breakdown; point; Dispersion; matrix; Influence; function; Principal; components; analysis; Projection-pursuit; Robustness (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00163-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:1:p:206-226
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().