EconPapers    
Economics at your fingertips  
 

Asymptotics in Bayesian decision theory with applications to global robustness

Christophe Abraham

Journal of Multivariate Analysis, 2005, vol. 95, issue 1, 50-65

Abstract: We provide the rate of convergence of the Bayes action derived from non smooth loss functions involved in Bayesian robustness. Such loss functions are typically not twice differentiable but admit right and left second derivatives. The asymptotic limit of three measures of global robustness is given. These measures are the range of the Bayes actions set associated with a class of loss functions, the maximum regret of using a particular loss when the subjective loss belongs to a given class and the range of the posterior expected loss when the loss ranges over a given class. An application to prior robustness with density ratio classes is provided.

Keywords: Bayesian; robustness; Class; of; loss; functions; Class; of; priors; Asymptotic; rate; of; convergence; Misspecified; models (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00140-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:1:p:50-65

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:50-65