Stochastic response restrictions
Harry Haupt and
Walter Oberhofer
Journal of Multivariate Analysis, 2005, vol. 95, issue 1, 66-75
Abstract:
This paper considers the implementation of prior stochastic information on unknown outcomes of the response variables into estimation and forecasting of systems of linear regression equations in the context of time series, cross sections, pooled and longitudinal data models. The established approach proves particularly useful when only aggregated information on the response variables is available, as is frequently the case in applied statistics. We address the combination of prior stochastic and sample information as an extension of standard Gauss-Markov theory. Prior stochastic information could be given in the form of experts' expectations, or from estimations and/or projections of other models. A classical (i.e. non-Bayesian) regression framework for the incorporation of prior knowledge in generalized least-squares estimation and prediction is developed.
Keywords: Stochastic; response; restrictions; BLU; Gauss-Markov; theory (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00159-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:1:p:66-75
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().