A new construction for skew multivariate distributions
Dipak K. Dey and
Junfeng Liu
Journal of Multivariate Analysis, 2005, vol. 95, issue 2, 323-344
Abstract:
This paper considers a new approach to develop a very general class of skew multivariate distributions. The approach is based on a linear combination of an elliptically distributed random variable with a linear constraint. Using this approach two different classes of multivariate distributions are constructed based on original distribution. These new classes include different types of skew normal (type A and type B) and other skew elliptical distributions, exist in the literature. We also derive the moment generating function, marginal and conditional density of our proposed classes of distributions. Straightforward explanations are applied to demonstrate the relationships among previous approaches by others with our proposed class of skew distributions.
Keywords: Elliptical; distribution; Linear; combination; Linear; constraint; Moment; generating; function; Multivariate; normal; Skewness (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00173-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:2:p:323-344
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().