EconPapers    
Economics at your fingertips  
 

A two-way analysis of variance model with positive definite interaction for homologous factors

David Causeur, Thierry Dhorne and Arlette Antoni

Journal of Multivariate Analysis, 2005, vol. 95, issue 2, 431-448

Abstract: A special type of modelling of interaction is investigated in the framework of two-way analysis of variance models for homologous factors. Factors are said to be homologous when their levels are in a meaningful one-to-one relationship, which arise in a wide variety of contexts, as recalled by McCullagh (J. Roy. Statist. Soc. B 62 (2000) 209). The classical linear context for analysis of interaction is extended by positive definiteness restrictions on the interaction parameters. These restrictions aim to provide a spatial representation of the interaction. Properties of the maximum likelihood estimators are derived for a given dimensionality of the model. When the dimension is unknown, an alternative procedure is proposed based on a penalty approach. This approach relies heavily on random matrix theory arguments but we focus on their statistical consequences especially on the reduction of over-fitting problems in the maximum likelihood estimation. Confidence ellipses are provided for an illustrative example.

Keywords: Biadditive; models; Biplot; Dimensionality; Eigenvalue; distribution; Homologous; factors; Multidimensional; scaling; Random; matrix; theory; Structured; interaction; models (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00161-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:95:y:2005:i:2:p:431-448

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:95:y:2005:i:2:p:431-448