Factorization of moving-average spectral densities by state-space representations and stacking
Lei M. Li
Journal of Multivariate Analysis, 2005, vol. 96, issue 2, 425-438
Abstract:
To factorize a spectral density matrix of a vector moving average process, we propose a state space representation. Although this state space is not necessarily of minimal dimension, its associated system matrices are simple and most matrix multiplications involved are nothing but index shifting. This greatly reduces the complexity of computation. Moreover, in this article we stack every q consecutive observations of the original process MA(q) and generate a vector MA(1) process. We consider a similar state space representation for the stacked process. Consequently, the solution hinges on a surprisingly compact discrete algebraic Riccati equation (DARE), which involves only one Toeplitz and one Hankel block matrix composed of autocovariance functions. One solution to this equation is given by the so-called iterative projection algorithm. Each iteration of the stacked version is equivalent to q iterations of the unstacked one. We show that the convergence behavior of the iterative projection algorithm is characterized by the decreasing rate of the partial correlation coefficients for the stacked process. In fact, the calculation of the partial correlation coefficients via the Whittle algorithm, which takes a very simple form in this case, offers another solution to the problem. To achieve computational efficiency, we apply the general Newton procedure given by Lancaster and Rodman to the DARE and obtain an algorithm of quadratic convergence rate. One immediate application of the new algorithms is polynomial stabilization. We also discuss various issues such as check of positivity and numerical implementation.
Keywords: Spectral; factorization; State; space; Moving; average; Algebraic; Riccati; equation; Stacking (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00232-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:96:y:2005:i:2:p:425-438
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().