Estimation of covariance matrices in fixed and mixed effects linear models
Tatsuya Kubokawa and
Ming-Tien Tsai
Journal of Multivariate Analysis, 2006, vol. 97, issue 10, 2242-2261
Abstract:
The estimation of the covariance matrix or the multivariate components of variance is considered in the multivariate linear regression models with effects being fixed or random. In this paper, we propose a new method to show that usual unbiased estimators are improved on by the truncated estimators. The method is based on the Stein-Haff identity, namely the integration by parts in the Wishart distribution, and it allows us to handle the general types of scale-equivariant estimators as well as the general fixed or mixed effects linear models.
Keywords: Covariance; matrix; Decision; theory; Estimation; Haff; identity; Improvement; James-Stein; estimator; Linear; regression; model; Minimaxity; Mixed; effects; model; Multivariate; normal; distribution; Stein; identity; Variance; component; Wishart; distribution (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00201-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:10:p:2242-2261
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().