The Matsumoto-Yor property and the structure of the Wishart distribution
Hélène Massam and
Jacek Wesolowski
Journal of Multivariate Analysis, 2006, vol. 97, issue 1, 103-123
Abstract:
This paper establishes a link between a generalized matrix Matsumoto-Yor (MY) property and the Wishart distribution. This link highlights certain conditional independence properties within blocks of the Wishart and leads to a new characterization of the Wishart distribution similar to the one recently obtained by Geiger and Heckerman but involving independences for only three pairs of block partitionings of the random matrix. In the process, we obtain two other main results. The first one is an extension of the MY independence property to random matrices of different dimensions. The second result is its converse. It extends previous characterizations of the matrix generalized inverse Gaussian and Wishart seen as a couple of distributions. We present two proofs for the generalized MY property. The first proof relies on a new version of Herz's identity for Bessel functions of matrix arguments. The second proof uses a representation of the MY property through the structure of the Wishart.
Keywords: Characterization; of; the; Wishart; GIG; distribution; Matsumoto-Yor; property; Graphical; Gaussian; models (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00230-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:1:p:103-123
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().