Bayesian inference in spherical linear models: robustness and conjugate analysis
R.B. Arellano-Valle,
G. del Pino and
P. Iglesias
Journal of Multivariate Analysis, 2006, vol. 97, issue 1, 179-197
Abstract:
The early work of Zellner on the multivariate Student-t linear model has been extended to Bayesian inference for linear models with dependent non-normal error terms, particularly through various papers by Osiewalski, Steel and coworkers. This article provides a full Bayesian analysis for a spherical linear model. The density generator of the spherical distribution is here allowed to depend both on the precision parameter [phi] and on the regression coefficients [beta]. Another distinctive aspect of this paper is that proper priors for the precision parameter are discussed. The normal-chi-squared family of prior distributions is extended to a new class, which allows the posterior analysis to be carried out analytically. On the other hand, a direct joint modelling of the data vector and of the parameters leads to conjugate distributions for the regression and the precision parameters, both individually and jointly. It is shown that some model specifications lead to Bayes estimators that do not depend on the choice of the density generator, in agreement with previous results obtained in the literature under different assumptions. Finally, the distribution theory developed to tackle the main problem is useful on its own right.
Keywords: Linear; regression; models; Elliptical; and; squared-radial; distributions; Elliptical; density; generator; Dispersion; and; dispersion-location; elliptical; models; Bayes; estimator; Conjugate; families (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00234-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:1:p:179-197
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().