EconPapers    
Economics at your fingertips  
 

Asymptotics for estimation and testing procedures under loss of identifiability

Hongtu Zhu and Heping Zhang

Journal of Multivariate Analysis, 2006, vol. 97, issue 1, 19-45

Abstract: Statistical analyses commonly make use of models that suffer from loss of identifiability. In this paper, we address important issues related to the parameter estimation and hypothesis testing in models with loss of identifiability. That is, there are multiple parameter points corresponding to the same true model. We refer the set of these parameter points to as the set of true parameter values. We consider the case where the set of true parameter values is allowed to be very large or even infinite, some parameter values may lie on the boundary of the parameter space, and the data are not necessarily independently and identically distributed. Our results are applicable to a large class of estimators and their related testing statistics derived from optimizing an objective function such as a likelihood. We examine three specific examples: (i) a finite mixture logistic regression model; (ii) stationary ARMA processes; (iii) general quadratic approximation using Hellinger distance. The applications to these examples demonstrate the applicability of our results in a broad range of difficult statistical problems.

Keywords: Asymptotic; distribution; Cone; Convergence; rate; Finite; mixture; models; Hellinger; distance; Normal; distribution (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00227-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:1:p:19-45

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:19-45