Latent models for cross-covariance
Jacob A. Wegelin,
Asa Packer and
Thomas S. Richardson
Journal of Multivariate Analysis, 2006, vol. 97, issue 1, 79-102
Abstract:
We consider models for the covariance between two blocks of variables. Such models are often used in situations where latent variables are believed to present. In this paper we characterize exactly the set of distributions given by a class of models with one-dimensional latent variables. These models relate two blocks of observed variables, modeling only the cross-covariance matrix. We describe the relation of this model to the singular value decomposition of the cross-covariance matrix. We show that, although the model is underidentified, useful information may be extracted. We further consider an alternative parameterization in which one latent variable is associated with each block, and we extend the result to models with r-dimensional latent variables.
Keywords: Canonical; correlation; Latent; variables; Partial; least; squares; Reduced-rank; regression; Singular; value; decomposition (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00229-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:1:p:79-102
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().