Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution
Hans Schneeweiss and
Chi-Lun Cheng
Journal of Multivariate Analysis, 2006, vol. 97, issue 2, 455-473
Abstract:
In a structural measurement error model the structural quasi-score (SQS) estimator is based on the distribution of the latent regressor variable. If this distribution is misspecified, the SQS estimator is (asymptotically) biased. Two types of misspecification are considered. Both assume that the statistician erroneously adopts a normal distribution as his model for the regressor distribution. In the first type of misspecification, the true model consists of a mixture of normal distributions which cluster around a single normal distribution, in the second type, the true distribution is a normal distribution admixed with a second normal distribution of low weight. In both cases of misspecification, the bias, of course, tends to zero when the size of misspecification tends to zero. However, in the first case the bias goes to zero in a flat way so that small deviations from the true model lead to a negligible bias, whereas in the second case the bias is noticeable even for small deviations from the true model.
Keywords: Measurement; error; model; Structural; case; Bias; Misspecification; Mixture; of; multivariate; normals; Quasi-score; estimator; Robustness (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00040-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:2:p:455-473
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().