An asymptotic expansion of the distribution of Rao's U-statistic under a general condition
Arjun K. Gupta,
Jin Xu and
Yasunori Fujikoshi
Journal of Multivariate Analysis, 2006, vol. 97, issue 2, 492-513
Abstract:
In this paper we consider the problem of testing the hypothesis about the sub-mean vector. For this propose, the asymptotic expansion of the null distribution of Rao's U-statistic under a general condition is obtained up to order of n-1. The same problem in the k-sample case is also investigated. We find that the asymptotic distribution of generalized U-statistic in the k-sample case is identical to that of the generalized Hotelling's T2 distribution up to n-1. A simulation experiment is carried out and its results are presented. It shows that the asymptotic distributions have significant improvement when comparing with the limiting distributions both in the small sample case and the large sample case. It also demonstrates the equivalence of two testing statistics mentioned above.
Keywords: Rao's; U-statistic; Characteristic; function; Multivariate; Hermite; polynomials; Multivariate; cumulants; Multivariate; skewness; Multivariate; kurtosis (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00042-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:2:p:492-513
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().