EconPapers    
Economics at your fingertips  
 

Nonlinear least-squares estimation

David Pollard and Peter Radchenko

Journal of Multivariate Analysis, 2006, vol. 97, issue 2, 548-562

Abstract: The paper uses empirical process techniques to study the asymptotics of the least-squares estimator (LSE) for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu's illustrates the use of the new theorems, leading to a normal approximation to the LSE with unusual logarithmic rescalings.

Keywords: Nonlinear; least; squares; Empirical; processes; Subgaussian; Consistency; Central; limit; theorem (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00045-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:2:p:548-562

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:548-562