Restricted expected multivariate least squares
Kai-Tai Fang,
Song-Gui Wang and
Dietrich von Rosen
Journal of Multivariate Analysis, 2006, vol. 97, issue 3, 619-632
Abstract:
A new approach of estimating parameters in multivariate models is introduced. A fitting function will be used. The idea is to estimate parameters so that the fitting function equals or will be close to its expected value. The function will be decomposed into two parts. From one part, which will be independent of the mean parameters, the dispersion matrix is estimated. This estimator is inserted in the second part which then yields the estimators of the mean parameters. The Growth Curve model, extended Growth Curve model and a multivariate variance components model will illustrate the approach.
Keywords: Estimators; Growth; curve; model; Extended; growth; curve; model; Least; squares; Variance; components; REMLS (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00048-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:3:p:619-632
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().