Measuring stochastic dependence using [phi]-divergence
Athanasios C. Micheas and
Konstantinos Zografos
Journal of Multivariate Analysis, 2006, vol. 97, issue 3, 765-784
Abstract:
The problem of bivariate (multivariate) dependence has enjoyed the attention of researchers for over a century, since independence in the data is often a desired property. There exists a vast literature on measures of dependence, based mostly on the distance of the joint distribution of the data and the product of the marginal distributions, where the latter distribution assumes the property of independence. In this article, we explore measures of multivariate dependence based on the [phi]-divergence of the joint distribution of a random vector and the distribution that corresponds to independence of the components of the vector, the product of the marginals. Properties of these measures are also investigated and we employ and extend the axiomatic framework of Renyi [On measures of dependence, Acta Math. Acad. Sci. Hungar. 10 (1959) 441-451], in order to assert the importance of [phi]-divergence measures of dependence for a general convex function [phi] as well as special cases of [phi]. Moreover, we obtain point estimates as well as interval estimators when an elliptical distribution is used to model the data, based on [phi]-divergence via Monte Carlo methods.
Keywords: Elliptical; family; of; distributions; Monte; Carlo; methods; Multivariate; dependence; Renyi's; axioms; [phi]-divergence; measures; of; dependence (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00051-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:3:p:765-784
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().