A high-dimensional test for the equality of the smallest eigenvalues of a covariance matrix
James R. Schott
Journal of Multivariate Analysis, 2006, vol. 97, issue 4, 827-843
Abstract:
For the test of sphericity, Ledoit and Wolf [Ann. Statist. 30 (2002) 1081-1102] proposed a statistic which is robust against high dimensionality. In this paper, we consider a natural generalization of their statistic for the test that the smallest eigenvalues of a covariance matrix are equal. Some inequalities are obtained for sums of eigenvalues and sums of squared eigenvalues. These bounds permit us to obtain the asymptotic null distribution of our statistic, as the dimensionality and sample size go to infinity together, by using distributional results obtained by Ledoit and Wolf [Ann. Statist. 30 (2002) 1081-1102]. Some empirical results comparing our test with the likelihood ratio test are also given.
Keywords: Principal; components; analysis; Sums; of; eigenvalues (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00081-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:4:p:827-843
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().