EconPapers    
Economics at your fingertips  
 

The hyper-Dirichlet process and its discrete approximations: The butterfly model

C. Asci, G. Nappo and M. Piccioni

Journal of Multivariate Analysis, 2006, vol. 97, issue 4, 895-924

Abstract: The aim of this paper is the study of some random probability distributions, called hyper-Dirichlet processes. In the simplest situation considered in the paper these distributions charge the product of three sample spaces, with the property that the first and the last component are independent conditional to the middle one. The law of the marginals on the first two and on the last two components are specified to be Dirichlet processes with the same marginal parameter measure on the common second component. The joint law is then obtained as the hyper-Markov combination, introduced in [A.P. Dawid, S.L. Lauritzen, Hyper-Markov laws in the statistical analysis of decomposable graphical models, Ann. Statist. 21 (3) (1993) 1272-1317], of these two Dirichlet processes. The processes constructed in this way in fact are in fact generalizations of the hyper-Dirichlet laws on contingency tables considered in the above paper. Our main result is the convergence to the hyper-Dirichlet process of the sequence of hyper-Dirichlet laws associated to finer and finer "discretizations" of the two parameter measures, which is proved by means of a suitable coupling construction.

Keywords: Dirichlet; laws; and; processes; Bayesian; statistics; Markov; distributions; Weak; convergence; Coupling (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00152-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:4:p:895-924

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:895-924