Limit distributions of least squares estimators in linear regression models with vague concepts
Volker Krätschmer
Journal of Multivariate Analysis, 2006, vol. 97, issue 5, 1044-1069
Abstract:
Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have lately been introduced (cf. [V. Krätschmer, Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle, unpublished postdoctoral thesis, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001; V. Krätschmer, Least squares estimation in linear regression models with vague concepts, Fuzzy Sets and Systems, accepted for publication]) to improve the empirical meaningfulness of the relationships between the involved items by a more sensitive attention to the problems of data measurement, in particular, the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least squares method. In another recent contribution (cf. [V. Krätschmer, Strong consistency of least squares estimation in linear regression models with vague concepts, J. Multivar. Anal., accepted for publication]) strong consistency and -consistency of this generalized least squares estimation have been shown. The aim of the paper is to complete these results by an investigation of the limit distributions of the estimators. It turns out that the classical results can be transferred, in some cases even asymptotic normality holds.
Keywords: Problem; of; adequacy; Random; fuzzy; sets; Aumann-expected; value; of; random; fuzzy; sets; lrvc-models; Least; squares; estimation; in; lrvc-models (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00209-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:5:p:1044-1069
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().