PLS regression: A directional signal-to-noise ratio approach
Pierre Druilhet and
Alain Mom
Journal of Multivariate Analysis, 2006, vol. 97, issue 6, 1313-1329
Abstract:
We present a new approach to univariate partial least squares regression (PLSR) based on directional signal-to-noise ratios (SNRs). We show how PLSR, unlike principal components regression, takes into account the actual value and not only the variance of the ordinary least squares (OLS) estimator. We find an orthogonal sequence of directions associated with decreasing SNR. Then, we state partial least squares estimators as least squares estimators constrained to be null on the last directions. We also give another procedure that shows how PLSR rebuilds the OLS estimator iteratively by seeking at each step the direction with the largest difference of signals over the noise. The latter approach does not involve any arbitrary scale or orthogonality constraints.
Keywords: Biased; regression; Constrained; least; squares; Regression; on; components; Partial; least; squares; Principal; components; Shrinkage (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00099-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:6:p:1313-1329
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().