On the unlinking conjecture of independent polynomial functions
Subir Kumar Bhandari and
Ayanendranath Basu
Journal of Multivariate Analysis, 2006, vol. 97, issue 6, 1355-1360
Abstract:
The celebrated U-conjecture states that under the Nn(0,In) distribution of the random vector X=(X1,...,Xn) in , two polynomials P(X) and Q(X) are unlinkable if they are independent [see Kagan et al., Characterization Problems in Mathematical Statistics, Wiley, New York, 1973]. Some results have been established in this direction, although the original conjecture is yet to be proved in generality. Here, we demonstrate that the conjecture is true in an important special case of the above, where P and Q are convex nonnegative polynomials with P(0)=0.
Keywords: Convex; polynomials; U-conjecture; Unlinkable; functions (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00097-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:6:p:1355-1360
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().