EconPapers    
Economics at your fingertips  
 

Optimum two level fractional factorial plans for model identification and discrimination

Subir Ghosh and Ying Tian

Journal of Multivariate Analysis, 2006, vol. 97, issue 6, 1437-1450

Abstract: Model identification and discrimination are two major statistical challenges. In this paper we consider a set of models for factorial experiments with the parameters representing the general mean, main effects, and only k out of all two-factor interactions. We consider the class of all fractional factorial plans with the same number of runs having the ability to identify all the models in , i.e., the full estimation capacity. The fractional factorial plans in with the full estimation capacity for k[greater-or-equal, slanted]2 are able to discriminate between models in for u[less-than-or-equals, slant]k*, where k*=(k/2) when k is even, k*=((k-1)/2) when k is odd. We obtain fractional factorial plans in satisfying the six optimality criterion functions AD, AT, AMCR, GD, GT, and GMCR for 2m factorial experiments when m=4 and 5. Both single stage and multi-stage (hierarchical) designs are given. Some results on estimation capacity of a fractional factorial plan for identifying models in are also given. Our designs D4.1 and D10 stand out in their performances relative to the designs given in Li and Nachtsheim [Model-robust factorial designs, Technometrics 42(4) (2000) 345-352.] for m=4 and 5 with respect to the criterion functions AD, AT, AMCR, GD, GT, and GMCR. Our design D4.2 stands out in its performance relative the Li-Nachtsheim design for m=4 with respect to the four criterion functions AT, AMCR, GT, and GMCR. However, the Li-Nachtsheim design for m=4 stands out in its performance relative to our design D4.2 with respect to the criterion functions AD and GD. Our design D14 does have the full estimation capacity for k=5 but the twelve run Li-Nachtsheim design does not have the full estimation capacity for k=5.

Keywords: Criterion; function; Discrimination; design; Estimation; capacity; Fractional; factorial; plans; Hierarchical; design; Optimum; design; Search; design (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00156-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:6:p:1437-1450

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1437-1450