EconPapers    
Economics at your fingertips  
 

Unbiased invariant minimum norm estimation in generalized growth curve model

Xiaoyong Wu, Guohua Zou and Jianwei Chen

Journal of Multivariate Analysis, 2006, vol. 97, issue 8, 1718-1741

Abstract: This paper considers the generalized growth curve model subject to R(Xm)[subset, double equals]R(Xm-1)[subset, double equals]...[subset, double equals]R(X1), where Bi are the matrices of unknown regression coefficients, Xi,Zi and U are known covariate matrices, i=1,2,...,m, and splits into a number of independently and identically distributed subvectors with mean zero and unknown covariance matrix [Sigma]. An unbiased invariant minimum norm quadratic estimator (MINQE(U,I)) of tr(C[Sigma]) is derived and the conditions for its optimality under the minimum variance criterion are investigated. The necessary and sufficient conditions for MINQE(U,I) of tr(C[Sigma]) to be a uniformly minimum variance invariant quadratic unbiased estimator (UMVIQUE) are obtained. An unbiased invariant minimum norm quadratic plus linear estimator (MINQLE(U,I)) of is also given. To compare with the existing maximum likelihood estimator (MLE) of tr(C[Sigma]), we conduct some simulation studies which show that our proposed estimator performs very well.

Keywords: Generalized growth curve model MINQE(U; I) MINQLE(U; I) UMVIQUE (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00074-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:8:p:1718-1741

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1718-1741