Choosing joint distributions so that the variance of the sum is small
Martin Knott and
Cyril Smith
Journal of Multivariate Analysis, 2006, vol. 97, issue 8, 1757-1765
Abstract:
The paper considers how to choose the joint distribution of several random variables each with a given marginal distribution so that their sum has a variance as small as possible. A theorem is given that allows the solution of this and of related problems for normal random variables. Several specific applications are given. Additional results are provided for radially symmetric joint distributions of three random variables when the sum is identically zero.
Keywords: Convexity; Antithetic; Radial; Symmetry; Mellin (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00014-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:8:p:1757-1765
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().