A unified approach to testing for and against a set of linear inequality constraints in the product multinomial setting
Hammou El Barmi and
Matthew Johnson
Journal of Multivariate Analysis, 2006, vol. 97, issue 8, 1894-1912
Abstract:
A problem that is frequently encountered in statistics concerns testing for equality of multiple probability vectors corresponding to independent multinomials against an alternative they are not equal. In applications where an assumption of some type of stochastic ordering is reasonable, it is desirable to test for equality against this more restrictive alternative. Similar problems have been considered heretofore using the likelihood ratio approach. This paper aims to generalize the existing results and provide a unified technique for testing for and against a set of linear inequality constraints placed upon on any probability vectors corresponding to r independent multinomials. The paper shows how to compute the maximum likelihood estimates under all hypotheses of interest and obtains the limiting distributions of the likelihood ratio test statistics. These limiting distributions are of chi bar square type and the expression of the weighting values is given. To illustrate our theoretical results, we use a real life data set to test against second-order stochastic ordering.
Keywords: Chi; bar; square; Inequality; constraints; Lagrange; multipliers; Likelihood; ratio; Orthant; probabilities; Stochastic; ordering (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00096-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:8:p:1894-1912
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().