Bias correction of cross-validation criterion based on Kullback-Leibler information under a general condition
Hirokazu Yanagihara,
Tetsuji Tonda and
Chieko Matsumoto
Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 1965-1975
Abstract:
This paper deals with the bias correction of the cross-validation (CV) criterion to estimate the predictive Kullback-Leibler information. A bias-corrected CV criterion is proposed by replacing the ordinary maximum likelihood estimator with the maximizer of the adjusted log-likelihood function. The adjustment is just slight and simple, but the improvement of the bias is remarkable. The bias of the ordinary CV criterion is O(n-1), but that of the bias-corrected CV criterion is O(n-2). We verify that our criterion has smaller bias than the AIC, TIC, EIC and the ordinary CV criterion by numerical experiments.
Keywords: Bias; correction; Cross-validation; Predictive; Kullback-Leibler; information; Model; misspecification; Model; selection; Robustness; Weighted; log-likelihood; function (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00080-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:1965-1975
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().