EconPapers    
Economics at your fingertips  
 

James-Stein estimators for time series regression models

Motohiro Senda and Masanobu Taniguchi

Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 1984-1996

Abstract: The least squares (LS) estimator seems the natural estimator of the coefficients of a Gaussian linear regression model. However, if the dimension of the vector of coefficients is greater than 2 and the residuals are independent and identically distributed, this conventional estimator is not admissible. James and Stein [Estimation with quadratic loss, Proceedings of the Fourth Berkely Symposium vol. 1, 1961, pp. 361-379] proposed a shrinkage estimator (James-Stein estimator) which improves the least squares estimator with respect to the mean squares error loss function. In this paper, we investigate the mean squares error of the James-Stein (JS) estimator for the regression coefficients when the residuals are generated from a Gaussian stationary process. Then, sufficient conditions for the JS to improve the LS are given. It is important to know the influence of the dependence on the JS. Also numerical studies illuminate some interesting features of the improvement. The results have potential applications to economics, engineering, and natural sciences.

Keywords: James-Stein; estimator; Least; squares; estimator; Gaussian; stationary; process; Mean; squares; error; Time; series; regression; model; Regression; spectrum; Residual; spectral; density; matrix (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00082-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:1984-1996

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:1984-1996